» » Электрический ток в полупроводниках. Собственная и примесная проводимости

Электрический ток в полупроводниках. Собственная и примесная проводимости

«Физика - 10 класс»

Почему сопротивление проводников зависит от температуры?
Какие явления наблюдаются в состоянии сверхпроводимости?

Полупроводники - вещества, удельное сопротивление которых имеет промежуточное значение между удельным сопротивлением металлов (10 -6 -10 -8 Ом м) и удельным сопротивлением диэлектриков (10 8 -10 13 Ом м).

Отличие проводников от полупроводников особенно проявляется при анализе зависимости их электропроводимости от температуры. Исследования показывают, что у ряда элементов (кремний, германий, селен, индий, мышьяк и др.) и соединений (PbS, CdS, GaAs и др.) удельное сопротивление с увеличением температуры не растёт, как у металлов (см. рис. 16.3), а, наоборот, чрезвычайно резко уменьшается (рис. 16.4).

Такое свойство присуще именно полупроводникам.

Из графика, изображённого на рисунке, видно, что при температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. Это означает, что при низких температурах полупроводник ведёт себя как диэлектрик. По мере повышения температуры его удельное сопротивление быстро уменьшается.


Строение полупроводников.


Для того чтобы включить транзисторный приёмник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала необходимо познакомиться с механизмом проводимости в полупроводниках. А для этого придётся вникнуть в природу связей , удерживающих атомы полупроводникового кристалла друг возле друга.

Для примера рассмотрим кристалл кремния.

Кремний - четырёхвалентный элемент. Это означает, что во внешней оболочке его атома имеется четыре электрона, сравнительно слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырём. Схема структуры кристалла кремния изображена на рисунке (16.5).

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью . В образовании этой связи от каждого атома участвует по одному валентному электрону, электроны отделяются от атома, которому они принадлежат (коллективируются кристаллом), и при своём движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.

Не надо думать, что коллективированная пара электронов принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.

Парноэлектронные связи в кристалле кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны являются как бы цементирующим раствором, удерживающим кристаллическую решётку, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет кристалл германия.


Электронная проводимость.


При нагревании кремния кинетическая энергия частиц повышается и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторённые пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решётки, создавая электрический ток (рис. 16.6).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью .

При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10 17 до 10 24 1/мл 3 . Это приводит к уменьшению сопротивления.


Дырочная проводимость.


При разрыве связи между атомами полупроводника образуется вакантное место с недостающим электроном, которое называют дыркой .

В дырке имеется избыточный положительный заряд по сравнению с остальными, не разорванными связями (см. рис. 16.6).

Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Если напряжённость электрического поля в образце равна нулю, то перемещение дырок происходит беспорядочно и поэтому не создаёт электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок.

Направление движения дырок противоположно направлению движения электронов (рис. 16.7).

В отсутствие внешнего поля на один свободный электрон (-) приходится одна дырка (+). При наложении поля свободный электрон смещается против напряжённости поля. В этом направлении перемещается также один из связанных электронов. Это выглядит как перемещение дырки в направлении поля.

Итак, в полупроводниках имеются носители заряда двух типов электроны и дырки.

Проводимость, обусловленная движением дырок, называется дырочной проводимостью полупроводников.

Мы рассмотрели механизм проводимости чистых полупроводников.

Проводимость чистых полупроводников называют собственной проводимостью .


Примесная проводимость.


Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов: например, в германии при комнатной температуре n е = 3 10 13 см -3 . В то же время число атомов германия в 1 см 3 порядка 10 23 .

Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов.

Проводимость полупроводников можно существенно увеличить, внедряя в них примесь. В этом случае наряду с собственной проводимостью возникает дополнительная - примесная проводимость .

Проводимость проводников, обусловленная внесением в их кристаллические решётки примесей (атомов посторонних химических элементов), называется примесной проводимостью .


Донорные примеси.


Добавим в кремний небольшое количество мышьяка. Атомы мышьяка имеют пять валентных электронов. Четыре из них участвуют в создании ковалентной связи данного атома с окружающими атомами кремния. Пятый валентный электрон оказывается слабо связанным с атомом. Он легко покидает атом мышьяка и становится свободным (рис. 16.8).

При добавлении одной десятимиллионной доли атомов мышьяка концентрация свободных электронов становится равной 10 16 см -3 . Это в тысячу раз больше концентрации свободных электронов в чистом полупроводнике.

Примеси, легко отдающие электроны и, следовательно, увеличивающие число свободных электронов, называют донорными (отдающими) примесями .

Свободные электроны перемещаются по полупроводнику подобно тому, как перемещаются свободные электроны в металле.

Полупроводники, имеющие донорные примеси и потому обладающие большим числом электронов (по сравнению с числом дырок), называются полупроводниками n-типа (от английского слова negative - отрицательный).

В полупроводнике n-типа электроны являются основными носителями заряда, а дырки - неосновными .


Акцепторные примеси.


Если в качестве примеси использовать индий, атомы которого трёхвалентны, то характер проводимости полупроводника меняется. Для образования нормальных парноэлектронных связей с соседями атому индия недостаёт одного электрона, который он берёт у соседнего атома кристалла. В результате образуется дырка. Число дырок в кристалле равно числу атомов примеси (рис. 16.9).

Примеси в полупроводнике, создающие дополнительную концентрацию дырок, называют акцепторными (принимающими) примесями .

При наличии электрического поля дырки перемещаются направленно и возникает электрический ток, обусловленный дырочной проводимостью.

Полупроводники с преобладанием дырочной проводимости над электронной называют полупроводниками p-типа (от английского слова positive - положительный).

Основными носителями заряда в полупроводнике p-типа являются дырки, а неосновными - электроны.

Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией одного из носителей тока электронов или дырок. Эта особенность полупроводников открывает широкие возможности для их практического применения.

Собственная проводимость

Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному электрическому полю (носителей отрицательного заряда против поля, положительного заряда – по полю). В случае полупроводниковых веществ возможны два типа проводимости в зависимости от чистоты химического состава вещества.

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники, то есть такие полупроводники, в состав которых входят атомы (или молекулы) только одного вида и отсутствуют посторонние включения. В таких полупроводниках наблюдают только собственную проводимость .

Собственная проводимость возникает при переходе электронов с верхних уровней валентной зоны в зону проводимости в случае получения им дополнительной достаточной энергии, которая равна (или несколько больше) ширине запрещенной зоны E g . Данную энергию, как уже говорилось в лекции 9, электрон может получить в результате тепловых колебаний решетки или под действием кванта света .

Рис. 12.1. Собственная проводимость полупроводника

Так как энергия тепловых колебаний, как правило, значительно меньше энергии кванта света, то какая именно энергия спровоцирует появление проводимости, зависит от ширины запрещенной зоны кристалла. Переход электрона в зону проводимости соответствует рождению двух свободных частиц : электрона, энергия которого оказывается равной одному из разрешенных значений из зоны проводимости, а также дырки, энергия которой равна одному из значений валентной зоны. Эти частицы являются носителями тока, причем вклад в проводимость вносят как электроны, так и дырки. Если приложить разность потенциалов к такому кристаллу, и электроны и дырки смогут двигаться вдоль всего образца. Это явление уже рассмотрено во второй лекции, оно называется внутренним фотоэффектом.

Можно найти электропроводность данного вещества. Для этого воспользуемся распределением электронов и дырок по энергиям (см. раздел 10). Так как электроны и дырки являются фермионами, т.е. частицами с полуцелым спином, это означает, что они подчиняются статистике Ферми-Дирака:

(12.1)

Параметр E F носит название энергии Ферми . Уровень Ферми – это виртуальный уровень, который соответствует середине между всеми занятыми и всеми свободными состояниями при условии, что тех и других имеется одинаковое количество. В идеале все свободные уровни располагаются выше уровня Ферми, все занятые – ниже. Однако в реальных кристаллах свободный уровень может оказаться ниже уровня Ферми, если выше уровня Ферми найдется занятый электроном уровень. Для металлов уровень Ферми находится в зоне проводимости. Для собственных (т.е. чистых) полупроводников энергия Ферми при комнатной температуре соответствует приблизительно середине запрещенной зоны, следовательно:

(12.2)

где E g – ширина запрещенной зоны.

Количество электронов, перешедших в зону проводимости (равно как и дырок, оставшихся в валентной зоне), будет пропорционально вероятности того, что электрон обладает соответствующей энергией:

Проводимость, очевидно, зависит от числа свободных носителей тока, то есть оказывается также пропорциональна функции f(E) :

(12.4)

или (12.5)

Видно, что электропроводность собственных полупроводников экспоненциально растет с температурой (рис. 12.2). Измерив электропроводность полупроводника при различных температурах, можно определить ширину запрещенной зоны. В полулогарифмических координатах (как на рис. 12.2) тангенс угла наклона прямой будет пропорционален E g .

Рис. 12.2. Зависимость электропроводности

собственного полупроводника от температуры

Напомним, что электропроводность металлов линейно уменьшается с ростом температуры. Такое отличие объясняется тем, что природа проводимости в полупроводниках и металлах принципиально различна.

Примесная проводимость

Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим строгий контроль количества примеси в составе вещества, такое контролируемое введение примеси называется легированием . Создание заданной концентрации примеси – довольно сложная, но выполнимая задача. Следует понимать, что в составе некоторых веществ неизбежно присутствует какое-то количество природной примеси. В таких случаях ее влияние на оптические и электрические свойства материала необходимо изучать и впоследствии учитывать.

Рассмотрим механизм примесной проводимости на примере классических полупроводников Ge , и Si . Оба элемента являются четырехвалентными, а атомы в кристалле связаны ковалентными силами. Это означает, что каждый атом в решетке окружен четырьмя такими же атомами и связан с ними, имея общую пару электронов.

Рис. 12.3. Сведенное в плоскость изображение кристаллической решетки

идеального 4-валентного кристалла

Если кристалл идеальный, то все связи вокруг атома являются насыщенными – не имеющими свободных мест, а свободных электронов в пространстве между атомами нет (рис. 12.3).

Предположим, что в кристалл вместо одного из основных атомов попал атом, валентность которого на единицу больше (атом фосфора P в кристалле Ge ). 4 из 5 электронов фосфора распределятся между соседними атомами германия, а пятый электрон будет держаться рядом за счет довольно слабой связи (рис. 12.4).

Рис. 12.4. Сведенное в плоскость изображение кристаллической решетки

Ge с 5-валентной примесью фосфора

Эту связь легко нарушить нагреванием кристалла или при его освещении. Оторванный электрон будет свободным и при подаче разности потенциалов сможет двигаться в соответствующую сторону. Примесь, которая добавляет в кристалл свободные электроны, называется донорной .

На энергетической схеме донорной примеси будет соответствовать уровень, расположенный на некотором расстоянии от дна зоны проводимости. Расстояние между уровнем примеси и зоной проводимости пропорционально энергии E примес , которая необходима для отрыва примесного электрона от материнского атома, т.е. для перевода электрона в свободное состояние (рис. 12.6 а). Факт отрыва электрон от своего атома и перехода его в свободное состояние означает переход электрона в зону проводимости. Донорный уровень, освободившийся при этом, впоследствии может на какое-то время захватить любой свободный электрон – то есть оборванная связь фосфора может служить кратковременным хранилищем электронов.

Итак, в результате получаем электрон проводимости, и в отличие от собственной проводимости (см. выше), свободная дырка не образуется. В регистрируемый ток в этом случае вклад будут вносить преимущественно электроны, которые являются в таком полупроводнике основными носителями заряда, а дырки – неосновными. Тип проводимости в таком кристалле называется электронным или n -типа, и сам кристалл получает статус кристалла с электронной проводимостью или кристалл n -типа.

Если же в четырехвалентный кристалл ввести трехвалентную примесь, то одна из четырех связей атома, расположенного рядом с примесью, будет ненасыщенной из-за отсутствия 4-го электрона (рис. 12.5). Такое вакантное место (дырка) легко захватывает электрон из соседнего узла – это соответствует переходу дырки в свободное состояние.

Рис. 12.5. Сведенное в плоскость изображение кристаллической решетки

Si с 3-валентной примесью бора

При подаче на кристалл разности потенциалов дырка перемещается так же как электрон проводимости, только в противоположную сторону. Таким образом, кристалл с примесью указанного типа будет иметь дырочный тип проводимости или называться кристаллом p -типа. На энергетической схеме появление примеси, которая в данном случае называется акцепторной , отразится возникновением уровня в запрещенной зоне вблизи потолка валентной зоны выше на E примес . На этот уровень будет захватываться электрон с занятого уровня в валентной зоне, в которой при этом будет оставаться свободная дырка (рис. 12.6 б).

Рис. 12.6. Примесная проводимость: а) электронная, б) дырочная

Очевидно, что в кристаллах с p-типом проводимости свободными являются только дырки, свободных электронов не появляется без дополнительно сообщенной энергии. Дырки являются основными носителями заряда, а электроны – неосновными. Следовательно, ток будет представлять собой упорядоченное движение преимущественно дырок (направление их движения совпадает с направлением тока).

Специфика донорной и акцепторной примесей такова, что их уровни на энергетической схеме могут располагаться относительно зон только определенным образом: донорные примеси дают уровни в верхней части запрещенной зоны, акцепторные – в нижней. Появление примеси в составе кристалла приводит к изменению положения уровня Ферми (см. выше).

В частности для кристалла с донорной примесью уровень E F поднимается вверх, для кристалла с акцепторной примесью – сдвигается вниз (рис. 12.6). Уровень Ферми является важной характеристикой полупроводника, в частности без использования этого понятия не обходится теория p-n переходов.

Добавим, что при получении кристалла с примесной проводимостью в качестве вводимой примеси можно использовать атомы и других валентностей. Тогда разница валентностей показывает, сколько свободных носителей заряда (электронов или дырок) вносит в кристалл каждый атом примеси.

Для получения высоких показателей электропроводности материала необходимо наличие в образце высокой концентрации носителей заряда (количества носителей заряда на единицу объема кристалла). Этого добиваются путем контролируемого введения примеси требуемого типа. Современные технологии позволяют учитывать количество введенных атомов буквально поштучно. Измерить концентрацию носителей заряда, а также определить их тип (электрон или дырка) можно с помощью эффекта Холла (см. курс электромагнетизма).

В общем случае проводимость полупроводникового материала складывается из собственной и примесной проводимости:

(12.6)

Примесная проводимость имеет также, как и собственная, экспоненциальную зависимость от температуры.

(12.7)

При низких сравнительно температурах основную роль играет примесная проводимость (рис.12.7 участок I). По наклону прямой зависимости проводимости от температуры в полулогарифмических координатах можно определить энергию активации примеси E примес , т.к. tgα прим пропорционален глубине залегания уровня примеси в запрещенной зоне.

При повышении температуры, когда все атомы примеси уже задействованы, в некотором интервале температур проводимость остается постоянной (рис.12.7 участок II).

Рис. 12.7. Зависимость электропроводности полупроводника от температуры

Начиная с температуры активации собственной проводимости, опять наблюдается снижение сопротивления материала (рис.12.7 участок III). Тангенс угла наклона соответствующего участка tgα соб пропорционален энергии активации собственной проводимости полупроводника, т.е. ширине его запрещенной зоны.

6. . 7. . 8. .

Полупроводники - это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5-2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительнго иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов связанных электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном - «дырки». Внешне этот процесс хаотического перемещения связанных электронов воспринимается как перемещение поло-жительного заряда. При помещении кристалла в элек¬трическое поле возникает упорядоченное движение «дырок» - дырочный ток проводимости.

В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.

На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь - это примесь с большей, чем у кристалла, валентностью. При добавлении такой примеси в полупроводнике образуются дополнительные свободные электроны. Именно поэтому примесь называется донорной. Преобладает электронная проводимость, а полупроводник называют полупроводником n-типа . Например, для кремния с валентностью n = 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.

Акцепторная примесь - это примесь с меньшей чем у кристалла валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Преобладает «дырочная» проводимость, а полупроводник называют полупроводником p-типа . Например, для кремния акцепторной примесью является индий с валентностью n = 3. Каждый атом индия приведет к образованию лишней «дырки».

Принцип действия большинства полупроводниковых приборов основан на свойствах р-n-перехода . При приведении в контакт двух полупроводниковых приборов р-типа и n-типа в месте контакта начинается диффузия электронов из n-области в p-область, а «дырок» - наоборот, из р- в n-область. Этот процесс будет не бесконечным во времени, так как образуется запирающий слой , который будет препятствовать дальнейшей диффузии электронов и «дырок».

р-n-Контакт полупроводников, подобно вакуумному диоду, обладает односторонней проводимостью: если к р-области подключить «+» источника тока, а к n-области «-» источника тока, то запирающий слой разрушится и р-n-контакт будет проводить ток, электроны из n-области пойдут в p-область, а «дырки» из p-области в n-область (рис. 22). В первом случае ток не равен нулю, во втором - ток равен нулю. Это означает, что если к р-области подключить «-» источника, а к n-области - «+» источника тока, то запирающий слой расширится и тока не будет.

Полупроводниковый диод состоит из контакта двух полупроводников р- и n-типа. Полупроводниковые диоды имеют небольшие размеры и массу, длительный срок службы, высокую механическую прочность, высокий коэффициент полезного действия; их недостатком является зависимость сопротивления от температуры.

В радиоэлектронике применяется также еще один полупроводниковый прибор: транзистор , который был изобретен в 1948 г. В основе триода лежит не один, а два р-n-перехода. Основное применение транзистора - это использование его в качестве усилителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве выпрямителя тока.

После открытия транзистора наступил качественно новый этап развития электроники - микроэлектроники, поднявший на качественно иную ступень развитие электронной техники, систем связи, автоматики. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов - транзисторов, диодов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе. В результате этого процесса на одном кристалле одновременно создается несколько тысяч транзисторов, конденсаторов, резисторов и диодов, до 3500 элементов. Размеры отдельных элементов микросхемы могут быть 2-5 мкм, погрешность при их нанесении не должна превышать 0,2 мкм. Микропроцессор современной ЭВМ, размещенный на. кристалле кремния размером 6x6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.

Однако в технике применяются также полупроводниковые приборы без р-n-перехода. Например, терморезисторы (для измерения температуры), фоторезисторы (в фотореле, аварийных выключателях, в дистанционных управлениях телевизорами и видео-магнитофонами) .

К полупроводникам относят широкий класс веществ, которые отлича-ются от металлов тем, что:

а) концентрация подвижных носителей заряда в них существенно ниже, чем концентрация атомов;

б) эта концентрация (а с ней и электропроводность) может меняться под влиянием температуры , освещения, небольшого количества примесей;

Полупроводники по своему строению делятся на кристаллические, амфорные и стеклообразные, жидкие. По химическому составу полупроводники делятся на элементарные, т. е. состоящие из атомов одного сорта (Ge , Si , Se , Т e ), двойные, тройные, четверные соединения. Полупроводни-ковые соединения принято классифицировать по номерам групп периодической таблицы элемен-тов, к которым принадлежат входящие в соединение элементы. Например, GaAs и InSb относятся к соединениям типа A III B V (существуют также и органические полупроводники).

Строение полупроводников.

Строение полупроводников рассмотрим на примере кремния.

Электронная проводимость.

Увеличение температуры приводит к увеличению кинетической энергии валентных электро-нов и разрыву валентных связей. Часть электронов становятся свободными (подобно электронам в металле), кристаллы под действием электрического поля начинают проводить ток (рис. выше, б ). Проводимость полупроводников, обусловленная свободными электронами, называется электронной проводимостью . Концентрация носителей заряда при увеличении температуры от 300 до 700 К растет от 10 17 до 10 24 м -3 , что и приводит к падению сопротивления.

Дырочная проводимость.

Разрыв валентных связей при увеличении температуры приводит к образованию вакантного места с недостающим электроном, которое имеет эффективный положительный заряд и называется дыркой . Становится возможным переход валентных электронов из соседних связей на ос-вободившееся место. Такое движение отрицательного заряда (электрона) в одном направлении эквивалентно движению положительного заряда (дырки) в противоположном.

Перемещение дырок по кристаллу происходит хаотически, но если к нему приложить раз-ность потенциалов , начнется их направленное движение вдоль электрического поля. Проводи-мость кристалла, обусловленная дырками, называется дырочной проводимостью.

Электронная и дырочная проводимость чистых (беспримесных) полупроводников называется собственной проводимостью полупроводников .

Собственная проводимость полупроводников невелика. Так, в Ge число носителей заряда (электронов) составляет всего одну десятимиллиардную часть от общего числа атомов.

Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному электрическому полю (носителей отрицательного заряда против поля, положительного заряда – по полю). В случае полупроводниковых веществ возможны два типа проводимости в зависимости от чистоты химического состава вещества.

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники, то есть такие полупроводники, в состав которых входят атомы (или молекулы) только одного вида и отсутствуют посторонние включения. В таких полупроводниках наблюдают только собственную проводимость .

Собственная проводимость возникает при переходе электронов с верхних уровней валентной зоны в зону проводимости в случае получения им дополнительной достаточной энергии, которая равна (или несколько больше) ширине запрещенной зоны E g . Данную энергию, как уже говорилось в лекции 9, электрон может получить в результате тепловых колебаний решетки или под действием кванта света .

Рис. 12.1. Собственная проводимость полупроводника

Так как энергия тепловых колебаний, как правило, значительно меньше энергии кванта света, то какая именно энергия спровоцирует появление проводимости, зависит от ширины запрещенной зоны кристалла. Переход электрона в зону проводимости соответствует рождению двух свободных частиц : электрона, энергия которого оказывается равной одному из разрешенных значений из зоны проводимости, а также дырки, энергия которой равна одному из значений валентной зоны. Эти частицы являются носителями тока, причем вклад в проводимость вносят как электроны, так и дырки. Если приложить разность потенциалов к такому кристаллу, и электроны и дырки смогут двигаться вдоль всего образца. Это явление уже рассмотрено во второй лекции, оно называется внутренним фотоэффектом.

Можно найти электропроводность данного вещества. Для этого воспользуемся распределением электронов и дырок по энергиям (см. раздел 10). Так как электроны и дырки являются фермионами, т.е. частицами с полуцелым спином, это означает, что они подчиняются статистике Ферми-Дирака:

(12.1)

Параметр E F носит название энергии Ферми . Уровень Ферми – это виртуальный уровень, который соответствует середине между всеми занятыми и всеми свободными состояниями при условии, что тех и других имеется одинаковое количество. В идеале все свободные уровни располагаются выше уровня Ферми, все занятые – ниже. Однако в реальных кристаллах свободный уровень может оказаться ниже уровня Ферми, если выше уровня Ферми найдется занятый электроном уровень. Для металлов уровень Ферми находится в зоне проводимости. Для собственных (т.е. чистых) полупроводников энергия Ферми при комнатной температуре соответствует приблизительно середине запрещенной зоны, следовательно:

(12.2)

где E g – ширина запрещенной зоны.

Количество электронов, перешедших в зону проводимости (равно как и дырок, оставшихся в валентной зоне), будет пропорционально вероятности того, что электрон обладает соответствующей энергией:

Проводимость, очевидно, зависит от числа свободных носителей тока, то есть оказывается также пропорциональна функции f(E) :

(12.4)

или (12.5)

Видно, что электропроводность собственных полупроводников экспоненциально растет с температурой (рис. 12.2). Измерив электропроводность полупроводника при различных температурах, можно определить ширину запрещенной зоны. В полулогарифмических координатах (как на рис. 12.2) тангенс угла наклона прямой будет пропорционален E g .

Рис. 12.2. Зависимость электропроводности

собственного полупроводника от температуры

Напомним, что электропроводность металлов линейно уменьшается с ростом температуры. Такое отличие объясняется тем, что природа проводимости в полупроводниках и металлах принципиально различна.

Примесная проводимость

Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим строгий контроль количества примеси в составе вещества, такое контролируемое введение примеси называется легированием . Создание заданной концентрации примеси – довольно сложная, но выполнимая задача. Следует понимать, что в составе некоторых веществ неизбежно присутствует какое-то количество природной примеси. В таких случаях ее влияние на оптические и электрические свойства материала необходимо изучать и впоследствии учитывать.

Рассмотрим механизм примесной проводимости на примере классических полупроводников Ge , и Si . Оба элемента являются четырехвалентными, а атомы в кристалле связаны ковалентными силами. Это означает, что каждый атом в решетке окружен четырьмя такими же атомами и связан с ними, имея общую пару электронов.

Рис. 12.3. Сведенное в плоскость изображение кристаллической решетки

идеального 4-валентного кристалла

Если кристалл идеальный, то все связи вокруг атома являются насыщенными – не имеющими свободных мест, а свободных электронов в пространстве между атомами нет (рис. 12.3).

Предположим, что в кристалл вместо одного из основных атомов попал атом, валентность которого на единицу больше (атом фосфора P в кристалле Ge ). 4 из 5 электронов фосфора распределятся между соседними атомами германия, а пятый электрон будет держаться рядом за счет довольно слабой связи (рис. 12.4).

Рис. 12.4. Сведенное в плоскость изображение кристаллической решетки

Ge с 5-валентной примесью фосфора

Эту связь легко нарушить нагреванием кристалла или при его освещении. Оторванный электрон будет свободным и при подаче разности потенциалов сможет двигаться в соответствующую сторону. Примесь, которая добавляет в кристалл свободные электроны, называется донорной .

На энергетической схеме донорной примеси будет соответствовать уровень, расположенный на некотором расстоянии от дна зоны проводимости. Расстояние между уровнем примеси и зоной проводимости пропорционально энергии E примес , которая необходима для отрыва примесного электрона от материнского атома, т.е. для перевода электрона в свободное состояние (рис. 12.6 а). Факт отрыва электрон от своего атома и перехода его в свободное состояние означает переход электрона в зону проводимости. Донорный уровень, освободившийся при этом, впоследствии может на какое-то время захватить любой свободный электрон – то есть оборванная связь фосфора может служить кратковременным хранилищем электронов.

Итак, в результате получаем электрон проводимости, и в отличие от собственной проводимости (см. выше), свободная дырка не образуется. В регистрируемый ток в этом случае вклад будут вносить преимущественно электроны, которые являются в таком полупроводнике основными носителями заряда, а дырки – неосновными. Тип проводимости в таком кристалле называется электронным или n -типа, и сам кристалл получает статус кристалла с электронной проводимостью или кристалл n -типа.

Если же в четырехвалентный кристалл ввести трехвалентную примесь, то одна из четырех связей атома, расположенного рядом с примесью, будет ненасыщенной из-за отсутствия 4-го электрона (рис. 12.5). Такое вакантное место (дырка) легко захватывает электрон из соседнего узла – это соответствует переходу дырки в свободное состояние.

Рис. 12.5. Сведенное в плоскость изображение кристаллической решетки

Si с 3-валентной примесью бора

При подаче на кристалл разности потенциалов дырка перемещается так же как электрон проводимости, только в противоположную сторону. Таким образом, кристалл с примесью указанного типа будет иметь дырочный тип проводимости или называться кристаллом p -типа. На энергетической схеме появление примеси, которая в данном случае называется акцепторной , отразится возникновением уровня в запрещенной зоне вблизи потолка валентной зоны выше на E примес . На этот уровень будет захватываться электрон с занятого уровня в валентной зоне, в которой при этом будет оставаться свободная дырка (рис. 12.6 б).

Рис. 12.6. Примесная проводимость: а) электронная, б) дырочная

Очевидно, что в кристаллах с p-типом проводимости свободными являются только дырки, свободных электронов не появляется без дополнительно сообщенной энергии. Дырки являются основными носителями заряда, а электроны – неосновными. Следовательно, ток будет представлять собой упорядоченное движение преимущественно дырок (направление их движения совпадает с направлением тока).

Специфика донорной и акцепторной примесей такова, что их уровни на энергетической схеме могут располагаться относительно зон только определенным образом: донорные примеси дают уровни в верхней части запрещенной зоны, акцепторные – в нижней. Появление примеси в составе кристалла приводит к изменению положения уровня Ферми (см. выше).

В частности для кристалла с донорной примесью уровень E F поднимается вверх, для кристалла с акцепторной примесью – сдвигается вниз (рис. 12.6). Уровень Ферми является важной характеристикой полупроводника, в частности без использования этого понятия не обходится теория p-n переходов.

Добавим, что при получении кристалла с примесной проводимостью в качестве вводимой примеси можно использовать атомы и других валентностей. Тогда разница валентностей показывает, сколько свободных носителей заряда (электронов или дырок) вносит в кристалл каждый атом примеси.

Для получения высоких показателей электропроводности материала необходимо наличие в образце высокой концентрации носителей заряда (количества носителей заряда на единицу объема кристалла). Этого добиваются путем контролируемого введения примеси требуемого типа. Современные технологии позволяют учитывать количество введенных атомов буквально поштучно. Измерить концентрацию носителей заряда, а также определить их тип (электрон или дырка) можно с помощью эффекта Холла (см. курс электромагнетизма).

В общем случае проводимость полупроводникового материала складывается из собственной и примесной проводимости:

(12.6)

Примесная проводимость имеет также, как и собственная, экспоненциальную зависимость от температуры.

(12.7)

При низких сравнительно температурах основную роль играет примесная проводимость (рис.12.7 участок I). По наклону прямой зависимости проводимости от температуры в полулогарифмических координатах можно определить энергию активации примеси E примес , т.к. tgα прим пропорционален глубине залегания уровня примеси в запрещенной зоне.

При повышении температуры, когда все атомы примеси уже задействованы, в некотором интервале температур проводимость остается постоянной (рис.12.7 участок II).

Рис. 12.7. Зависимость электропроводности полупроводника от температуры

Начиная с температуры активации собственной проводимости, опять наблюдается снижение сопротивления материала (рис.12.7 участок III). Тангенс угла наклона соответствующего участка tgα соб пропорционален энергии активации собственной проводимости полупроводника, т.е. ширине его запрещенной зоны.